

PRODUCT SPECIFICATION

Part No.:	AC-XF-3G10-20				
Description:	10G XFP Transceiver, SMF 1310nm 20km				
Release Date	Rev.	Revision Change Description			
2016/07/16	Α0	New Release			
2020/12/28	A1	Template Update			

Features

- ♦ Supports 9.95Gbps to 11.3Gbps bit rates
- ♦ XFI Loopback Mode
- ♦ Power dissipation <2.0W</p>
- ♦ DFB laser and PIN receiver
- ♦ Single +3.3V power supply
- ♦ Hot-pluggable XFP footprint
- Maximum link length of 20km
- ♦ No Reference Clock required
- ♦ RoHS Compliant
- ♦ Full Duplex LC connector
- ♦ Built-in digital diagnostic functions
- ♦ Standard bail release mechanism
- ♦ Standard: 0 to +70°C♦ Industrial: -40 to +85°C

Application

- ♦ 10GBASE-LR/LW 10G Ethernet
- ♦ 10G Fiber Channel
- SONET OC-192 SR-1 SDH STM I-64.1

Standard

- ♦ Compliant with XFP MSA
- ♦ Compliant with SFF-8472
- ♦ Compatible with IEEE802.3ae

Specification:

Absolute Maximum Ratings							
Parameter	Max	Unit					
Storage temperature	TS	-40	85	$^{\circ}$ C			
Power Supply Voltage	Vcc	-0.5	+4	V			
Relative Humidity	RH	5	95	%			

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit	
One section Cons. To see exect use	Standard	т-	0		+70	°C
Operating Case Temperature	Industrial	Tc	-40		+85	°C
Power Supply Voltage		Vcc	3.13	3.30	3.47	V
Power Supply Current		Icc			450	mA
Data Rate				10.3	11.3	Gbps
Fiber Length 9/125μm core SMF			-	20	-	km

Electrical Characteristics								
Parameter	Symbol	Min	Typical	Max	Unit	Notes		
Transmitter differential input voltage		120		820	mV			
Receiver differential output Voltage		340	650	850	mV			
Input differential impedance	R		100		Ω			
Transmit Disable Assert Time			10		us			
Data output rise time	tr			38	ps			
Data output fall time	tf			38	ps			
	Voh	2		Vcc	V	LVTTL		
Transmit Fault (TX_Fault)	Vol	0		0.8	V	LVTTL		
	Voh	Vcc-0.5		Vcc	V	LVTTL		
Loss of Signal (LOS)	Vol	0		0.5	V	LVTTL		
TX Disable	Vih	2		Vcc	V	LVTTL		
	Vil	0		0.8	V	LVTTL		

Optical transmitter Characteristics							
Parameter	Symbol	Min	Typical	Max	Unit	Notes	
Launched Power (avg.)	Pout	-6		0.5	dBm		

Operating Wavelength Range	λc	1290	1310	1330	nm	
Extinction Ratio	ER	3.5			dB	2
Relative Intensity Noise	RIN			-130	dB/Hz	
Average Launch power of transmitter	P _{OFF}			-30	dBm	
Side mode Suppression ratio	SMSR		30		PS	3
Transmitter and Dispersion Penalty	TDP			3.2	dBm	

Output Eye Diagram Complies with IEEE802.3z eye masks when filtered

Optical receiver Characteristics								
Parameter		Symbol	Min	Typical	Max	Unit	Notes	
Receiver Sensitivity		S			-15	dBm	4	
Waveleng	th Range	λς	1270		1610	nm		
Optical Po	ower Input Overload	P _{in-max}	+0.5			dBm	4	
Receiver	Receiver Reflectance				-14	dB		
105	Optical De-assert	Pd			-18	dD.co	4	
LOS	Optical Assert	Pa	-32			dBm	4	
LOS hysteresis			0.5			dB	5	

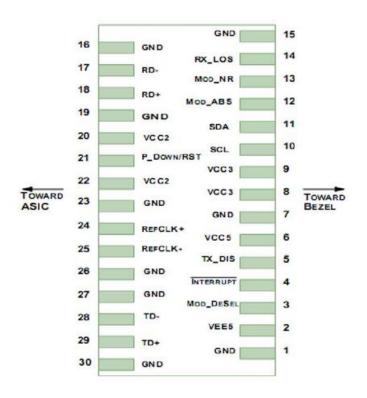
Notes:

- 1) The supply current is XFP module's working current.
- 2) For the measurements, the device was driven with 10Gbps data pattern with 2³¹-1 PRBS payload.
- 3) Optical transition time is the time interval required for the rising or falling edge of an optical pulse to transition between the 20% and 80% amplitudes relative to the logical 1 and 0 levels
- 4) Measured with a PRBS 2³¹-1 test pattern, @10Gbps, ER=3.5dB, BER<10⁻¹²
- 5) The LOS Hysteresis minimizes 'chatter' on the output line. In principle, Hysteresis alone does not guarantee chatter-free operation.

Digital Diagnostic Memory Map

As defined by the XFP MSA, LONTE XFP transceivers provide digital diagnostic functions via a 2-wire serial interface, which allows real-time access to the following operating parameters:

- Transceiver temperature
- Laser bias current
- Transmitted optical power
- Received optical power
- Transceiver supply voltage


It also provides a sophisticated system of alarm and warning flags, which may be used to alert end-users when particular operating parameters are outside of a factory-set normal range.

The operating and diagnostics information is monitored and reported by a Digital Diagnostics Transceiver Controller (DDTC) inside the transceiver, which is accessed through the 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL pin) is generated by the host. The positive edge clocks data into the XFP transceiver into those segments of its memory map that are not write-protected. The negative edge clocks data from the XFP transceiver. The serial data signal (SDA pin) is bi-directional for

serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially. The 2-wire serial interface provides sequential or random access to the 8 bit parameters, addressed from 000h to the maximum address of the memory.

Pin Descriptions

Pin Assignment

Pin	Signal Name	Description	Plug Seq.	Notes
1	GND	Module Ground		1
2	VEE5	Optional –5.2 Power Supply – Not required		
3	Mod-Desel	Module De-select; When held low allows the module to respond to 2-wire serial interface commands	LVTTL-I	
4	Interrupt	Interrupt (bar); Indicates presence of an important condition which can be read over the serial 2-wire interface	LVTTL-O	2
5	TX_DIS	Transmitter Disable; Transmitter laser source turned off	LVTTL-I	
6	VCC5	+5 Power Supply		
7	GND	Module Ground		1
8	VCC3	+3.3V Power Supply		
9	VCC3	+3.3V Power Supply		
10	SCL	Serial 2-wire interface clock	LVTTL-I	2
11	SDA	Serial 2-wire interface data line	LVTTL-I/O	2

12	Mod Abs	Module Absent; Indicates module is not present.	LVTTL-I	2
		Grounded in the module.		
13	Mod_NR	Module Not Ready; XGIGA defines it as a logical OR		2
15	IVIOU_INK	between RX_LOS and Loss of Lock in TX/RX.	LVTTL-I	2
14	RX_LOS	Receiver Loss of Signal indicator	LVTTL-I	2
15	GND	Module Ground		1
16	GND	Module Ground		1
17	RD-	Receiver inverted data output	CML-O	
18	RD+	Receiver non-inverted data output	CML-O	
19	GND	Module Ground		1
20	VCC2	+1.8V Power Supply – Not required		
		Power Down; When high, places the module in the		
		low power stand-by		
	P_Down/RST	mode and on the falling edge of P_Down initiates a	LVTTL-I	
21		module reset		
		Reset; The falling edge initiates a complete reset of		
		the module		
		including the 2-wire serial interface, equivalent to		
22	VCC2	a power cycle.		
		+1.8V Power Supply – Not required		
23	GND	Module Ground		1
24	D-fCLK.	Reference Clock non-inverted input, AC coupled on	DECL I	2
24	RefCLK+	the host board – Not required	PECL-I	3
25	Reference Clock inverted input, AC coupl	Reference Clock inverted input, AC coupled on the	DECL I	2
25	RefCLK-	host board – Not required	PECL-I	3
26	GND	Module Ground		1
27	GND	Module Ground		1
28	TD-	Transmitter inverted data input	CML-I	
29	TD+	Transmitter non-inverted data input	CML-I	
30	GND	Module Ground		1

Notes:


Plug Seq.: Pin engagement sequence during hot plugging.

- 1) Module circuit ground is isolated from module chassis ground within the module.
- 2) Open collector; should be pulled up with 4.7k 10kohms on host board to a voltage between 3.15V and 3.6V.
- 3) A Reference Clock input is not required by the AC-XF-3G10-10. If present, it will be ignored.

Package Outline

Dimensions are in millimeters. All dimensions are ±0.2mm unless otherwise specified. (Unit: mm)

Regulatory Compliance

Feature	Test	Method
Electrostatic Discharge	MIL-STD-883E	Class 1 (> 1 Flat) Human Bady Madal
(ESD) to the Electrical Pins	Method 3015.7	Class 1 (>1.5kV) – Human Body Model
Electrostatic Discharge	IEC61000 4 3	Class 2/5 4 0(4V)
(ESD) Immunity	IEC61000-4-2	Class 2(>4.0kV)
	CISPR22 ITE Class B	
Electromagnetic	FCC Class B	Comply with standard
Interference (EMI)	CENELEC EN55022	Comply with standard
	VCCI Class 1	
Immunity	IEC61000-4-3	Comply with standard
	FDA 21CFR 1040.10 and	Commentials with Class Llassy
Eye Safety	1040.11	Compatible with Class I laser
	EN (IEC) 60825-1,2	Product

Ordering information

	Specifications									
Part. No	Pack	Rate (Gbps)	Tx (nm)	Po (dBm)	RX	Sen (dBm)	Temp (°C)	Rea ch (km)	DDM	
AC-XF-3G10-20	XFP	10.3125	1310	-6~0.5	PIN	<-15	0~70	20	Υ	
AC-XF-3G10-20F	XFP	10.3125	1310	-6~0.5	PIN	<-15	-40~85	20	Υ	